New biosensor chip for detecting DNA mutations

University of California, San Diego has developed a sensor capable of detecting single nucleotide polymorphisms (SNPs), a type of DNA mutations.

Research team has created an electrical graphene chip that is able to detect mutations in DNA. Researchers say the technology could be used in a wide range of medical applications in the future, including blood testing for early cancer screenings, tracking disease biomarkers and even real-time detection of viral and even microbial sequences.

Professor of bioengineering and team leader, Ratnesh Lal says the team is at the forefront of developing a fast and affordable digital method to detect gene mutations at high resolution. This is on a scale of a single nucleotide change in a nucleic acid sequence.

The technology, which is at a proof-of-concept stage, is a first step toward a biosensor chip that can be implanted in the body to detect a specific DNA mutation—in real time—and transmit the information wirelessly to a mobile device such as a smartphone or laptop.

The team led by Lal, who serves as co-director for the Center of Excellence for Nano-Medicine and Engineering, a subcenter of the Institute of Engineering in Medicine (IEM) at UC San Diego, and Gennadi Glinsky, a research scientist at IEM, developed a new technique to detect the most common genetic mutation called a single nucleotide polymorphism (SNP), which is a variation of a single nucleotide base (A, C, G or T) in the DNA sequence. While most SNPs have no discernable effect on health, some are associated with pathological conditions such as cancer, diabetes, heart disease, neurodegenerative disorders, autoimmune and inflammatory diseases.

The chip consists of a DNA probe embedded onto a graphene field effect transistor. The DNA probe is an engineered piece of double stranded DNA that contains a sequence coding for a specific type of SNP. The chip is specifically engineered and fabricated to capture DNA (or RNA) molecules with the single nucleotide mutation—whenever these pieces of DNA (or RNA) bind to the probe, an electrical signal is produced.

Click Here for a HighResolution Version