Lab-Grown Diamonds And Science Behind It

Lab created diamonds are man-made diamonds that consist of actual carbon atoms arranged in the characteristic diamond crystal structure. Diamond simulants, such as cubic zirconia and moissanite, are diamond look-alikes and are not true carbon crystals.

Lab created diamonds (also known as man-made diamonds, synthetic diamonds or pure grown diamonds) are grown in highly-controlled laboratory conditions that simulate the earth’s natural growing environment, producing real diamonds that are optically, physically and chemically identical to earth mined diamonds.

Lab created diamonds are made using one of two techniques. Each process produces pure carbon diamonds when complete, however they are often used for different application. High Pressure High Temperature (HPHT) is our primary growing process, while Chemical Vapor Deposition (CVD) is commonly used to produce diamonds for industrial purposes.

Additionally,  lab diamonds are also grown from the tiny carbon seeds of pre-existing diamonds. Advanced technology – either extreme pressure and heat or a special deposition process – replicates the natural method of diamond formation. Lab grown fancy colored diamonds are formed when small amounts of specific trace elements are present during the growth phase of the diamond, just like in nature.

Lab made diamonds are an eco-friendly product. By choosing a grown diamond versus an earth-mined diamond you’re reducing the harmful impact mining has on the environment and native communities.

FACT: The amount of land disturbed in the creation of a man made diamond = 0.00000071 hectares/carat. The use of water is also minimized with approximately 70 litres used in the creation of a 1 carat grown diamond.




Guaranteed Conflict Free No Yes
Hardness Mohs 10 10
SP3 Carbon Diamond Bonds % 100% 100%
Internal Crystal Structure Face-Centered-Cubic / Singly Refractive Face-Centered-Cubic / Singly Refractive
Hardness Comparable n/a Same as Mined Diamond
Cuts Glass Yes Yes
Clarity Varies IF to IS
Index of Refraction 2.42 2.42
Color Various Grades D to F Grades
Cut Varies on Cost Ideal to Very Good
Final Polish Diamond Powder Diamond Powder
Availability Abundant, but supply is tightly restricted Available in a variety of colors, shapes and sizes
Price $$$$$ Up to 40% less than mined diamonds


Beginning in the 1930s, scientists began to recognize that certain kinds of diamonds displayed similar features. They grouped the diamonds into two main categories called type I and type II based on differences in transparency under ultraviolet radiation. Scientists were able to further divide type I and type II diamonds into two subcategories by the arrangement of carbon—and impurity—atoms in the diamond structure. In 1959 they discovered that nitrogen was the principal chemical impurity in diamond and that while type I diamonds contained this impurity, type II diamonds did not.

Diamond type classification system

This diagram shows a simplified version of the diamond type classification system. Type I (top row) and type II (bottom row) diamonds can each be divided into two subcategories based on the arrangement of carbon (and impurity) atoms in the diamond structure. C = carbon atom, N = nitrogen atom, and B = boron atom. Diamond type can be determined quickly with a scientific method called infrared spectroscopy.

The vast majority of natural diamonds are what scientists call type Ia. Type Ia diamonds contain plentiful nitrogen in clusters or pairs. This kind of diamond cannot be grown artificially. Type Ib diamonds contain scattered and isolated nitrogen atoms that are not in pairs or clusters. Type Ib diamonds are rare in nature. Type IIa diamond contain almost no nitrogen, while IIb diamond contains boron.

Synthetic diamonds correspond to types Ib, IIa, and IIb, all rare categories among natural diamonds.

At GIA type I and type II diamonds can be distinguished by the latter’s transparency under short-wave ultraviolet radiation, and both types can be definitively separated by infrared spectroscopy.

Natural HPHT
Ia (near-colorless) Common
Ib (yellow) Rare Available Rare
IIa (colorless) Rare Rare Available
IIb (blue) Rare Rare Rare
This table illustrates the relative abundance of the natural diamond types and the two kinds of synthetic diamonds. Most synthetic diamonds are either type Ib or type IIa.


Natural diamond crystals formed millions—sometimes billions—of years ago deep in the earth, at depths of 100 miles (160 km) or more, and were brought up to the surface much later by explosive volcanic eruptions. These eruptions formed narrow vertical pipes of an igneous rock called kimberlite. Kimberlite pipes are mined to recover the diamonds, and the ore is mechanically broken down to free the crystals. The amount of diamond in kimberlite is very low—perhaps one part per million—so miners must process large amounts of ore to recover the diamonds.

Natural diamond crystals

Natural diamond crystals (left) show typical rounded octahedral shapes that are the consequence of conditions deep within the earth. They’re brought to the surface by volcanic eruptions that form kimberlite pipes (center). The ideal crystal shape of a natural gem diamond is an octahedron (right). Diamond growth takes place on the eight crystal faces.

Natural diamonds grow under a range of temperature and pressure conditions. The temperatures are higher than those used to grow synthetic diamonds. At high temperatures, diamonds grow as octahedral crystals, but in the lower temperatures of the laboratory, they grow as crystals with both octahedral and cubic faces. The great age of natural diamonds means that the nitrogen impurities in most diamonds have had time to aggregate into pairs or clusters, making the vast majority—over 95 percent—type Ia.

Synthetic diamonds are grown over a very short time—several weeks to one month or more—under conditions different from natural diamond formation deep in the earth. Because of the very short growth period, the shape of a synthetic diamond crystal is very different from that of a natural diamond.


Scientists first grew synthetic diamonds in the mid-1950s as tiny crystals. Production of larger crystals suitable for jewelry use began in the mid-1990s and continues today, with more companies becoming involved with diamond growth. Synthetic diamonds are grown in several countries for both jewelry and industrial applications—which may be the more important use for the material (Large Colorless HPHT Synthetic Gem Diamonds from China, Gem News International, Gems & Gemology, Spring 2016, Vol. 52, No. 1).

The traditional synthesis method, called high-pressure, high-temperature (HPHT) growth, involves diamond formation from a molten metal alloy, such as iron (Fe), nickel (Ni), or cobalt (Co). The newer method, referred to as chemical vapor deposition (CVD) or low-pressure, high-temperature (LPHT) growth, involves diamond formation from a gas in a vacuum chamber.

In both methods a diamond crystal or plate is used as a seed to initiate growth.


HPHT diamond growth takes place in a small capsule within an apparatus capable of generating very high pressures. Within the capsule, diamond powder starting material dissolves in the molten metal flux, and then it crystallizes on the seed to form the synthetic diamond crystal. Crystallization occurs over a period of several weeks to a month or more to create one or a few crystals.

HPHT synthetic diamond crystals typically show cubic faces in addition to octahedral ones. Because the shapes of natural and HPHT synthetic diamond crystals are different, their internal growth patterns also differ dramatically. These growth patterns can be among the most reliable ways to separate them.

The resulting faceted synthetic gems often exhibit visual features such as color distribution, fluorescence zoning, and graining patterns related to their cross-shaped, growth-sector structure, as well as the presence of occasional dark flux-metal inclusions. In some cases the material exhibits persistent phosphorescence after the ultraviolet lamp is turned off. These synthetic diamonds can be positively identified using laboratory techniques such as visible and photoluminescence spectroscopy.

Most HPHT-grown crystals are yellow, orangy yellow, or brownish yellow. Almost all are type IIb, which is rare in natural diamonds.

Creating colorless HPHT synthetics has been challenging, as modifications to growth conditions and equipment are necessary to exclude nitrogen. In addition, growth rates for high-purity colorless diamond (type IIa or weak type IIb) are lower than for type Ib synthetic diamond, necessitating longer growth times and greater control over the temperature and pressure conditions. While it has traditionally been difficult to grow high-quality colorless HPHT crystals, recent developments have produced crystals sufficient for faceted stones over 10 carats in weight (Large Blue and Colorless HPHT Synthetic Diamonds, Lab Notes, Gems & Gemology, Summer 2016, Vol. 52, No. 2).

The addition of boron in the growth system results in blue crystals. Other colors—such as pink and red—can be produced by post-growth treatment processes that involve radiation and heating, but they are less common.

HPHT synthesis

In HPHT synthesis, a press (left) applies extremely high pressures and temperatures to a central growth chamber that contains the necessary ingredient. This results in synthetic diamond crystals with combinations of cubic and octahedral faces (center and right).

Chart that accompanies an article on synthetic diamonds published in the Winter 2004 issue of Gems & Gemology.


CVD diamond growth takes place inside a vacuum chamber filled with a carbon-containing gas, such as methane. A source of energy—like a microwave beam—breaks down the gas molecules, and the carbon atoms are attracted downward to flat diamond seed plates. Crystallization occurs over a period of several weeks to create a number of crystals at the same time. The exact number depends on the size of the chamber and the number of seed plates. The tabular crystals often have a rough edge of black graphite. They often also display a brown color that can be removed by heat treatment prior to faceting for gem purposes.

Colorless gem-quality CVD-grown synthetic diamonds

Colorless gem-quality CVD-grown synthetic diamonds such as these (0.22 to 0.31 ct) are now commercially available, making proper identification important. Photo by Jian Xin (Jae) Liao/GIA.

Most CVD crystals are brownish or grayish, but if a tiny amount of nitrogen or boron is introduced into the chamber, yellow, pink-orange, or blue crystals can be created. Colorless crystals are easier to produce with this method, but they require a longer time to grow. Most of the CVD-grown colorless material on the market is believed to have been brown crystals decolorized by HPHT annealing. CVD synthetic diamonds are most commonly type IIa.

CVD synthetic diamonds have different gemological properties than HPHT-grown material. They tend to display even coloration and banded “strain” patterns when observed between crossed polarizing filters, and they are of high clarity with few, if any, tiny dark carbon inclusions.

CVD synthesis

In CVD synthesis, deposition of synthetic diamond occurs from a carbon-rich gas onto a flat diamond seed surface. The synthetic diamond grows in thin layers, and its final thickness depends on the amount of time allowed for growth (left). This results in flat, tabular crystals (center and right) with exteriors coated in black graphite crystals.


Over the past few years, a growing number of companies have begun production of synthetic diamonds for jewelry use. There have been continued improvements in their clarity and color, as well as increases in carat weight. Considering the high incidence of synthetic diamonds in news reports, GIA encounters only a small number of synthetic diamonds—apparently submitted unknowingly for GIA grading reports.

To identify gem materials of all kinds, a trained gemologist uses several kinds of gem-testing equipment, including a refractometer, an ultraviolet fluorescence lamp, a binocular microscope, a polariscope, and additional testing tools. As synthetic diamond quality improves further, it’s becoming more challenging to separate them from natural gems using standard equipment.

While even a trained gemologist may not be able to recognize synthetic diamonds, they can be identified by GIA.

HPHT Synthetic CVD Synthetic
Uneven color distribution Even color distribution
Graining patterns No graining patterns
Unusual fluorescence colors Unusual fluorescence colors
Fluorescence color patterns Fluorescence color patterns
Occasional phosphorescence Occasional phosphorescence
Metallic flux inclusions Occasional dark pinpoint inclusions
No strain patterns Banded strain patterns
Possible inscription on girdle Possible inscription on girdle
This table lists many of the distinctive visual features of the two kinds of synthetic diamonds.

These diagnostic features have been discussed and illustrated in the articles on synthetic diamonds in GIA’s quarterly professional journal, Gems & Gemology. Every issue—past and current—can be viewed and downloaded at the GIA website.

These visual features are characteristic of the majority of synthetic diamonds, but not every faceted synthetic diamond will exhibit all of these features. For example, a particular synthetic diamond may not display any fluorescence. Therefore, it is important to base synthetic diamond identification on as many diagnostic features as possible.

HPHT-grown colored synthetic diamonds often display uneven coloration that can be seen with transmitted light using the microscope, and if needed, immersing the cut stone in water or mineral oil to minimize surface reflections. This color zoning is due to how impurities, such as nitrogen, are incorporated into the synthetic diamond crystal as it forms. Occasionally natural diamonds display some color zoning, but not in the geometric pattern shown by HPHT synthetic diamonds.

Color zoning in colored HPHT synthetic diamonds

Color zoning in colored HPHT synthetic diamonds corresponds to the different crystal faces and results in different patterns than those seen in natural diamond crystals. Certain impurity elements are concentrated in particular directions of growth. The areas labeled Ib contain dispersed nitrogen impurities, those labeled IIb contain boron, and the colorless areas (IIa) are generally free of impurity elements. Only synthetic diamonds commonly show mixtures of nitrogen and boron impurities in the same crystal.

In contrast, CVD-grown synthetic diamonds normally show even coloration.

HPHT synthetic diamonds often display inclusions of solidified flux metal, which appear black and opaque in transmitted light but have a metallic luster in reflected light. Because the flux metal alloy used for diamond growth usually contains elements such as iron, nickel, and cobalt, synthetic diamonds with larger metallic inclusions can be picked up with a magnet.

Flux inclusions

HPHT synthetic diamonds often display inclusions of flux metal, which appear black and opaque in transmitted light but have a metallic luster in reflected light. In some cases there are enough nickel-iron (Ni-Fe) flux inclusions present for a gem to be attracted to a magnet.

CVD-grown synthetic diamonds form in a different way, and they do not have metallic inclusions.

Some natural diamonds contain dark inclusions of graphite or some other mineral, but these inclusions do not have a metallic luster.

When examined between two polarizing filters oriented at a 90-degree angle to one another, a natural diamond often exhibits a bright crosshatched or mosaic pattern of interference or “strain” colors. These interference colors arise from the diamond being subjected to stresses while it was deep in the earth or during its explosive eruption to the earth’s surface. In contrast, synthetic diamonds grow in a nearly uniform pressure environment where they are not subjected to stresses, so when examined in the same way, they display either no strain pattern or a weak banded strain pattern.

The fluorescence of synthetic diamonds is also often quite helpful for identification—it is often stronger under a short-wave than a long-wave ultraviolet lamp, and it can display a distinctive pattern.

HPHT synthetic diamonds displaying a cross-shaped fluorescence pattern

HPHT synthetics typically display a cross-shaped fluorescence pattern on the crown or pavilion.

HPHT-grown synthetic diamonds tend to show a cross-shaped fluorescence pattern on the crown or pavilion of the cut stone. CVD-grown synthetic diamonds may show a striated pattern when viewed through the pavilion facets. Typical fluorescence colors are green, yellow-green, yellow, orange, or red.

When the ultraviolet lamp is turned off, the synthetic diamond may exhibit persistent phosphorescence for up to a minute or more.

At GIA we use a fluorescence imaging instrument called a DiamondView for examining diamonds. This instrument reveals the characteristic growth patterns within diamond crystals.

DiamondView imaging system

Credit :GIA

One thought on “Lab-Grown Diamonds And Science Behind It

  1. Maulik Prajapati says:

    How nitrogen affects lab grown diamond???

Leave a Reply

Your email address will not be published. Required fields are marked *